

/ınritsu

VECTOR NETWORK MEASUREMENT SYSTEMS (VNMS) MS4622A/B/D, MS4623A/B/D, MS4624A/B/D

Ethernet / GPIB

10 MHz to 3 GHz

10 MHz to 6 GHz

10 MHz to 9 GHz

Innovative Manufacturing Solutions for Measuring S-Parameters, NF, P_{1dB}, IMD, and 3 and 4-Port Devices

Anritsu's family of RF Vector Network Measurement Systems include the MS462XA, MS462XB, and the new MS462xD. Code named Scorpion⁶⁵, the MS462XX line is much more capable than traditional VNAs. With Scorpion's all new measurement options of vector error-corrected Noise Figure, Intermodulation Distortion, Fourth Measurement Port, and Harmonics, they create a total test solution. When you add the standard benefits of outstanding dynamic range and blazing fast measurement speed, you have a truly innovative solution for a manufacturing test environment!

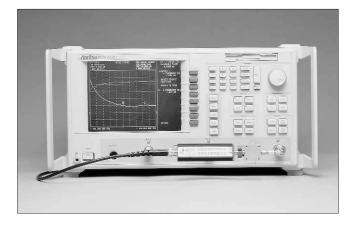
Key Benefits

- See the true performance of all your passive and active components including antennas, isolators, filters, duplexers, couplers, SAW filters, baluns, amplifiers, mixers, and multi-port components
- With a single connection perform S-parameter, Harmonics, Time Domain, Compression, Intermodulation Distortion (IMD), Noise Figure (NF), and Frequency Translated Group Delay for accurate and thorough device characterization
- Optimized for your manufacturing process with features like 2 & 4 port AutoCal[™] modules which simplify calibrations, sequences for automating repetitive keystrokes, enhanced markers simplify data collection, and external SCSI interface for massive storage
- Measurement speeds of 150 μsec/point and dynamic range of 125 dB

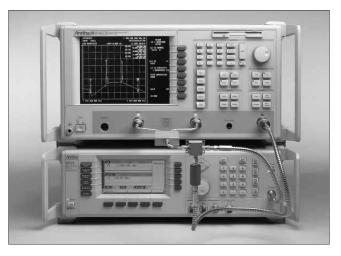
Scorpion's AutoCal* feature also provides the capability to achieve fast, accurate, and highly repeatable calibrations without the need for an external controller. By using AutoCal* standard connector types or test port cable converters, you can calibrate directly using Type N, K, 3.5 mm, or SMA connectors. Planned upgrades include adapter characterization with the ability to calibrate using 7/16 or TNC type connectors.

• 4-Port Balance/Differential Measurements

The MS462xD series of Vector Network Measurement Systems (VNMS) allow you to characterize devices like SAW filters and integrated circuits using powerful features like mixed-mode S-parameters, embedding/de-embedding, and arbitrary impedance. De-embedding utilities provide compensation techniques for typical test fixture environments to further enhance the measurement accuracy, while integrated embedding utilities, consisting of an extensive library of circuit primitives, increases time-to-market and yield when simulating the final matched behavior of components. The Scorpion's arbitrary impedance transformations also accurately handle non-50 Ω measurement scenarios typically associated with balanced devices, making the VNMS well suited for applications requiring ripple, insertion loss and amplitude imbalance measurements on the order of 0.1 dB.


Amplifier Measurements

Some of today's most demanding VNA measurements involve the characterization and tuning of multiple port devices such as duplexers, combiners, couplers, etc. In a traditional 2-port VNA, the full characterization and tuning of such devices presents significant challenges in terms of measurement speed, calibration, and the switching of input signals and measurement ports. With the addition of the third measurement port, the simplicity and speed with which these devices can be tested is greatly enhanced. The MS4622B, MS4623, and MS4624B network analyzers not only offer the option of adding a third measurement port, they also offer the industry's first ever second internal source. This second source is completely independent from the main source that switches between ports 1 and 2. By the addition of this second source, the potential now exists for replacing the signal generators and spectrum analyzers currently needed to characterize the non-linear effects that occur when multiple tones are simultaneously present in the pass-band of an active device.


• Vector error-corrected noise figure measurements

The MS4622B, MS4623B, and MS4624B Vector Network Measurement Systems deliver the industry's first ever capability for making vector error-corrected noise figure measurements on active devices in today's hottest market - wireless communications. The Noise Figure options covering the frequency ranges of 50 MHz to 3 GHz and 50 MHz to 6 GHz, give you the functionality for making noise figure measurements much more accurately than has ever before been possible. This option allows for making S-parameter measurements and noise figure measurements with a single test connection. The measurement setup can be configured to make measurements with the noise source set in either an internal or an external mode. In the external mode, the noise source is connected directly to the DUT similar to traditional scalar noise figure measurements. In the internal mode, the noise source is connected to the VNA rear panel and internally routed to port 1. Therefore, when a 12-term calibration is applied concurrently with the noise figure calibration, you can make vector error-corrected noise figure measurements.

Mixer measurements

Scorpion can also accurately characterize your mixers and other frequency-translating devices (FTDs) for isolation, match, conversion loss, noise figure and frequency translated group delay (FTGD). Without changing cables or instruments, Scorpion can make all these measurements quickly, easily and accurately. Add an external synthesizer and Scorpion can easily orchestrate swept frequency and swept power mixer IMD measurements. You no longer have to buy and integrate five separate instruments to perform these everyday measurements. With the integrated measurement flexibility of Scorpion, you can design and manufacture all of your passive, active, and frequency translating devices using a single instrument.

• AutoCal Automatic Calibrators

One source of potential errors and inaccuracies in any measurement system is its calibration. A great deal of time can be wasted in a busy manufacturing environment trying to verify calibration accuracy, especially when multiple shifts run on several different test stations for the same product line. For this situation, you need a calibration system in place that offers the highest possible degree of assurance that every station on every shift is calibrated for identical results. With the Anritsu AutoCal automatic calibrator, you get just that. Simply connect a serial cable between the AutoCal* and the rear panel of the VNA and you're ready to go. If adapters become necessary, AutoCal can handle them with its revolutionary approach to adapter removal. This approach avoids the necessity of multiple calibrations commonly used in adapter removal calibrations. By using the AutoCal adapter characterization process, you can calibrate in a SMA, Type N, 3.5mm, TNC, or 7/16 environment with confidence.

Specifications

	tandard cor			N female 3.5 mm female, 3.5 mm male, GPC-7, N male					
Op	Optional connector types		3.5 mm remale, 3.	5 mm male, GPC-7,		Directivity	Course metab	Lood motal	
			Connector	Configuration	Frequency (MHz)	(dB)	Source match (dB)	Load match (dB)	
				Ports 1 and 2	10 to 1000	>46	>44	>46	
	Measurement port characteristics		MS462xB	1000 to 3000	>44	>41	>44		
		3.5 mm	MS462xD	3000 to 6000 6000 to 9000	>38 >37	>39 >36	>38 >37		
		(MS4600/11S)	D. 1. 0 1.4	10 to 1000	>44	>42	>44		
		(MS4600/11SF)	Ports 3 and 4 MS462xB/Opt3x	1000 to 3000	>42	>40	>42		
			MS462xD	3000 to 6000	>37	>37	>37		
				6000 to 9000	>36	>35	>36		
			Ports 1 and 2	10 to 1000	>46	>44	>46		
			MS462xB	1000 to 3000 3000 to 6000	>44 >38	>41 >39	>44 >38		
M		nt nort	N-Type Standard N(F) (MS4600/11NM)	MS462xD	6000 to 9000	>37	>36	>37	
				Ports 3 and 4	10 to 1000	>44	>42	>44	
Me ch			(1010-1000) 1 114101)	MS462xB/Opt3x	1000 to 3000	>42	>40	>42	
				MS462xD	3000 to 6000	>37	>37	>37	
					6000 to 9000	>36	>35	>36	
				Ports 1 and 2	10 to 1000 1000 to 3000	>46 >44	>44 >41	>46 >44	
				MS462xB	3000 to 6000	>38	>39	>38	
			GPC-7	MS462xD	6000 to 9000	>37	>36	>37	
			(MS4600/11A)	Ports 3 and 4	10 to 1000	>44	>42	>44	
				MS462xB/Opt3x	1000 to 3000	>42	>40	>42	
				MS462xD	3000 to 6000 6000 to 9000	>37 >36	>37 >35	>37 >36	
Fre	Frequency range		MS4622A/B/D, 10 MS4623A/B/D, 10 MS4624A/B/D, 10	MHz to 6 GHz	0000 10 9000	>30	200		
Fre	Frequency resolution		1Hz						
		tability (with base) – aging	<5x10 / year						
-	emperature	, , ,	<5x10 over +15°0	C to +50°C					
	Power output range			ssion/Reflection Test	Set -	+10 to -85 dBm			
Po			MS4623A Transmi MS4623B Active R MS4623B (Opt 3) MS4623B (Opt 4) MS4623B (Opt 6) MS4623D Balance	w/ 3rd Test Port d/Differential 4-Port ssion/Reflection Test deversing Test Set w/ 2nd Source, 3rd T w/ Noise Figure (3 G	Set	+7 to -85 dBm +10 to -85 dBm +10 to -85 dBm +10 to -85 dBm +7 to -85 dBm +7 to -85 dBm +5 to -85 dBm +7 to -85 dBm +7 to -85 dBm +7 to -85 dBm +10 to -85 dBm			
			MS4624B Active R			+7 to –85 dBm			
			MS4624B (Opt 3)	w/ 2nd Šource, 3rd T	est Port & S/A	+7 to –85 dBm			
			MS4624B (Opt 3) MS4624B (Opt 6)	w/ 2nd Source, 3rd T w/ 3rd Test Port	est Port & S/A	+7 to –85 dBm +7 to –85 dBm			
Po	ower contro	ol range	MS4624B (Opt 3) MS4624B (Opt 6) MS4624D Balance	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port	est Port & S/A -	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm	imum power output for	a unit is +10 dl	
	ower contro		MS4624B (Opt 3) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The mining The source power +10 dBm (on the s In addition, the Por	w/ 2nd Šource, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set fro impler test sets, rang	est Port & S/A power sweep is -1! om the front panel n ging to +5 dBm on th may be attenuated	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Po ne most complex) to in 10 dB steps using	ort 1 power level is set -15 dBm with 0.01 dB the internal 70 dB ste	table from 3 resolution.	
Sc		er level	MS4624B (Opt 3) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The mining The source power +10 dBm (on the s In addition, the Por Port 3 step attenuation.	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set fro impler test sets, rang t 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (no	power sweep is -1! om the front panel n ging to +5 dBm on tt may be attenuated n D models. Port 1 s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone most complex) to in 10 dB steps using step attenuator is opi	ort 1 power level is set -15 dBm with 0.01 dB the internal 70 dB ste	table from 3 resolution. ep attenuator.	
So	ource powe	er level accuracy	MS4624B (Opt 3) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por 3 step attenua ±1 dB to 6 GHz, ± maximum rated po	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranget 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower).	r power sweep is -1! r power sweep is -1! om the front panel n ging to +5 dBm on th may be attenuated n D models. Port 1 s flat power calibration	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max ne most complex) to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set –15 dBm with 0.01 dB the internal 70 dB ste ional in A models.	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
So Po	ource powe ower level a evel test po	er level accuracy	MS4624B (Opt 3) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenua ±1 dB to 6 GHz, ±' maximum rated po The power at all sw <-30 dBc at maxim	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranget 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower).	r power sweep is –1! r power sweep is –1! r pom the front panel n ging to +5 dBm on th may be attenuated n D models. Port 1 s flat power calibration veled to within ±1 dB S4622x and MS4623	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
Po Le	ource powe ower level a evel test po	er level accuracy ort power	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenua ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranger 1 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower).	r power sweep is -1! r power s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
So Po Le Ha	ource power ower level a evel test po armonics a	er level accuracy ort power and spurious	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenua ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranget 1 (& Port 3) power stor is not available in 1.5 dB to 9 GHz (nower). The frequencies is less that the first sets of the first set of the first sets of the first sets of the first sets of the first set of the first sets of the first set	r power sweep is -1! r power s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
So Po Le Ha	ource power ower level a evel test po armonics a weep type ower sweep	er level accuracy ort power ond spurious orange Frequency range	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenue ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxin <-25 dBc at maxin Linear, CW, Marke	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set frompler test sets, ranget 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower). The prequencies is level to a set of the power (MS) num rated power (MS) r, or N-Discrete point mum rated power (MS)	r power sweep is -1! r power s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
So Po Le Ha	ource power ower level a evel test po armonics a weep type ower sweep	accuracy ort power and spurious orange	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por 73 step attenue ±1 dB to 6 GHz, ±1 maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim Linear, CW, Marke 20 dB (minimum)	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set frompler test sets, ranget 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower). The prequencies is level to a set of the power (MS) num rated power (MS) r, or N-Discrete point mum rated power (MS)	r power sweep is -1! r power s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to to in 10 dB steps using step attenuator is opi n applied; full-band f	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 3 resolution. ep attenuator. 5 dBm, 0 dBm,	
Po Le Ha	ource power level a evel test po armonics a weep type ower sweep from the cource ource	er level accuracy ort power and spurious orange Frequency range Frequency	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenue ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim Linear, CW, Marke 20 dB (minimum) 10 MHz to 3 GHz (1 Hz	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranger 1 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower). The frequencies is level from the first sets of the first set	r power sweep is -1!	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone ne most complex) to in 10 dB steps using step attenuator is opin n applied; full-band for i. Only port 1 and port 3x)	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB ste ional in A models. requency sweep at —1	table from 8 resolution. ep attenuator. 5 dBm, 0 dBm, externally levele	
Po Le Ha Sw Po	ource power level a evel test pource aweep type ower sweep F F F F F F F F F F F F F F F F F F	er level accuracy ort power and spurious orange Frequency range Frequency esolution Power level	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B (Opt 6) MS4624D Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Por Port 3 step attenua ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim Linear, CW, Marke 20 dB (minimum) 10 MHz to 3 GHz (1 Hz ±1 dB to 6 GHz, ± and maximum rate <-30 dBc at maxim	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranger 1 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower). The frequencies is level from the first sets of the first set	r power sweep is –19 r power s	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone most complex) to in 10 dB steps using step attenuator is opi n applied; full-band f i. Only port 1 and por 3x)	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB stational in A models. requency sweep at —1 t 3 (if installed) can be	table from 8 resolution. ep attenuator. 5 dBm, 0 dBm, externally levele	
So Po Le Ha	ource power level a evel test polarmonics a weep type ower sweep from the cource approach ource appring produce a pource a pource a pource a experience a factor ource a fa	er level accuracy ort power orange Frequency range Frequency esolution Power level accuracy Harmonics	MS4624B (Opt 3) MS4624B (Opt 6) MS4624B (Opt 6) MS4624B Balance ≥ 20 dB. The minim The source power +10 dBm (on the s In addition, the Poi Port 3 step attenua ±1 dB to 6 GHz, ± maximum rated po The power at all sw <-30 dBc at maxim <-25 dBc at maxim Linear, CW, Marke 20 dB (minimum) 10 MHz to 3 GHz (1 Hz ±1 dB to 6 GHz, ± and maximum rate <-30 dBc at maxim <-25 dBc at maxim	w/ 2nd Source, 3rd T w/ 3rd Test Port d/Differential 4-Port num absolute level for (dBm) may be set from the first sets, ranger 1 1 (& Port 3) power ator is not available in 1.5 dB to 9 GHz (nower). The frequencies is level from the first sets of the first set	r power sweep is –1! ging to +5 dBm on the may be attenuated n D models. Port 1 s flat power calibration veled to within ±1 dB 64622x and MS4623 64624x) t sweep flat power calibration 64622x and MS4623 64624x and MS4623	+7 to –85 dBm +7 to –85 dBm +7 to –85 dBm 5 dBm while the max nenu or via GPIB. Pone most complex) to in 10 dB steps using step attenuator is opi n applied; full-band f i. Only port 1 and por 3x)	ort 1 power level is set —15 dBm with 0.01 dB the internal 70 dB stational in A models. requency sweep at —1 t 3 (if installed) can be	table from 8 resolution. ep attenuator. 5 dBm, 0 dBm, externally levele	

Continued on next page

specs	Average noise level			GHz); Typically > –1 GHz); Typically > –10				
Receiver specs	Maximum input level	+27 dBm, +20 dBm noise figure mode						
Reo	Damage level	> +30 dBm, > +23 dBm noise figure mode						
	Measurement speed summary	Measurement times are measured using a single trace (S ₂₁) display and one average. The measurement speeds for the communications band are measured in a 25 MHz band from 824 – 849 MHz. The typical measurement times displayed are as follows:						
		Data points	I F bandwidth (Hz)	10 MHz to 3 GHz (ms)	10 MHz to 6 GHz (ms)	10 MHz to 9 GHz (ms)	Communications band (ms)	
		51	30 kHz 10 kHz 3 kHz 1 kHz 300 Hz	16 21 32 66 187	18 23 35 69 189	31 3 5 46 76 203	11 16 27 61 184	
		101	30 kHz 10 kHz 3 kHz 1 kHz 300 Hz	26 35 57 126 366	28 38 60 129 370	40 48 71 138 380	20 28 50 120 368	
		201	30 kHz 10 kHz 3 kHz 1 kHz 300 Hz	44 61 106 242 716	48 65 110 246 720	64 81 126 262 740	37 52 98 234 712	
		401	30 kHz 10 kHz 3 kHz 1 kHz 300 Hz	80 114 206 480 1424	87 121 212 484 1432	110 146 236 508 1448	70 104 196 468 1408	
		801	30 kHz 10 kHz 3 kHz 1 kHz 300 Hz	150 218 400 952 2820	161 230 412 960 2840	202 270 456 1000 2900	130 198 380 928 2800	
	Parameters	S , S , S , S , S , S , S , S , S , S ,						
	Measurement frequency range	Frequency range of measurement can be narrowed within the calibration range without recalibration. CW mode permits single frequency measurements, also without recalibration. In addition, the system accepts N discrete frequency points where 2 < N < 1601.						
	Domains	Frequency Domain	, CW Draw, and opt	ional High Speed Tir	ne (Distance) Doma	in		
	Formats Data points	Log Magnitude, Phase, Log Magnitude & Phase, Smith Chart (Impedance), Smith Chart (Admittance), Linear Polar, Log Polar, Group Delay, Linear Magnitude, Linear Magnitude and Phase, Real, Imaginary, Real & Imaginary, SWR, and Power 1601 maximum. Number of data points can be switched to a value of 801, 401, 201, 101, 51, 15, or 3 points without recalibration (if 1601 points were used in the calibration). In addition, the system accepts an arbitrary set of N discrete						
	Reference delay	data points where 2 ≤N ≤1601. CW mode permits selection of a single data point without recalibration. Can be entered in time or in distance (when the dielectric constant is entered). Automatic reference delay feature adds the correct electrical length compensation at the push of a button. Software compensation for the electrical length difference between reference and test is always accurate and stable since measurement frequencies are always synthesized. In addition, the system compensates reference phase delay for dispersive transmission media such as microstrip.						
lities	Alternate sweep	Allows the ability to decouple channel 1 and 2 from channel 3 and 4 for the following parameters: correction type, start and stop frequencies, number of data points, markers, sweep time, averaging, smoothing, and IF bandwidth.						
Measurement capabilities	Markers	Twelve independent markers can be used to read out simultaneous measurement data. In alternate sweep mode there are sets of markers for each frequency sweep. In delta reference marker mode, any one marker can be selected as the reference for the other eleven. Markers can be directed automatically to the minimum or maximum of a data trace.						
ureme	Enhanced markers	Marker search for a level or bandwidth, displaying an active marker for each channel, and discrete or continuous (interpolated) markers. Identifies the X dB bandwidth of amplifiers, filters, and other frequency sensitive devices.						
leas	Marker sweep	Sweeps upward in frequency between any two markers. Recalibration is not required during the marker sweep.						
2	Limit lines	Either single or segmented limit lines can be displayed. Two limit lines are available for each trace.						
	Single limit readouts	Interpolation algorithm determines the exact intersection frequencies of data traces and limit lines.						
	Segmented limit lines	A total of 20 segments (10 upper and 10 lower) can be generated per data trace. Complete segmented traces can be offset in both frequency and amplitude.						
	Test limits	Both single and segmented limits can be used for PASS/FAIL testing. PASS or FAIL status is indicated on the display after each sweep. In addition, PASS/FAIL status is output through the rear panel I/O connector as selectable TTL levels (PASS=0V, FAIL=+5V, or PASS=+5V, FAIL=0V).						
	Tune mode	Tune Mode optimizes sweep speed in tuning applications by updating forward S-parameters more frequently than reverse ones. This mode lets users select the ratio of forward sweeps to reverse sweeps after a full 12-term calibration. The ratio of forward sweeps to reverse sweeps can be set anywhere between 1:1 to 10,000:1.						
	Power sweep measurements	Both Swept Power Gain Compression and Swept Frequency Gain Compression modes are available.						
	Sequencing	Seven measurement sequences can be created, stored, edited, and run from the front panel. Sequences can include front-panel functions as well as user-definable control statements. Sequences can be run from either the unit front panel, via GPIB, or from an AT-style keyboard plugged into the front panel.						
	Harmonic measurement			2 nd , 3 rd , 4 th , 5 th , 6 th ,	•	iic		

Display capabilities	Display channels		Four, each of which can display any S-parameter or user-defined parameter in any format with up to two traces per channel for a maximum of eight traces simultaneously. Each channel is also capable of displaying harmonics, noise figure, intermodulation distortion, or time domain trace. A single channel, two channels (1 and 3, or 2 and 4), or all four channels can be displayed simultaneously. Channels 1 and 3, or channels 2 and 4, can be overlaid for rectilinear graph types.
	Trace overlay		Displays two data traces on the active channel's graticule simultaneously. The overlaid trace is displayed in yellow and the primary trace is displayed in red.
isplay	Trace memory		A separate memory for each channel can be used to store measurement data for later display or subtraction, addition, multiplication or division with current measurement data.
	Blank frequenc	cy information	Blanking function removes all references to displayed frequencies on the LCD, Frequency blanking can only be restored through a system reset or GPIB command.
	Data averaging		Averaging of 1 to 4096 averages can be selected. The data averaging function is performed at each data point during the frequency sweep. Averaging can be toggled on or off via the front panel; a front-panel LED indicates that the data averaging function is enabled.
	IF bandwidth		Soft Key selection of IF bandwidth (30 kHz, 10 kHz, 3 kHz, 1 kHz, 300 Hz, 100 Hz, 30 Hz, 10 Hz)
	Trace smoothing		Computes an average over a percentage range of the data trace. The percentage of trace to be smoothed can be selected from 0 to 20% of trace.
			Group delay is measured by computing the phase change in degrees across a frequency step by applying the formula:
	Group delay	Group delay	$\frac{\text{Tg} = -1/360 \text{ d(phase)}}{\text{d(frequency)}}$
		Aperture	Defined as the frequency span over which the phase change is computed at a given frequency point. The aperture can be changed without recalibration. The minimum aperture is the frequency range divided by the number of points in calibration and can be increased to 20% of the frequency range without recalibration. The frequency width of the aperture and the percent of the frequency range are displayed automatically.
ents	characteristics	Range	The maximum delay range is limited to measuring no more than ±180° of phase change within the aperture set by the number of frequency points. A frequency step size of 100 kHz corresponds to 10 microseconds.
əme		Measurement	For continuous measurement of a through connection, RSS fluctuations due to phase and FM noise are:
Measurement enhancements		repeatability (sweep to sweep)	1.41 {(Phase Noise)^2 + (Tg x Residual FM Noise)^2}^.5 360 (Aperture in Hz)
nt e		,	Error in Tg = Error in phase
la la		Accuracy	+ (Tg x Aperature Freq. Error (Hz)
nre		Accuracy	Aperture
Meas		Frequency Translating Group Delay	Allows the measurement of group delay of mixers and other translating devices by analyzing the phase shift experienced by a modulated signal (generated internally). The above Group Delay equation applies, except that the phase change is measured across the modulating bandwidth of the test signal instead of across frequency points. The aperture is fixed at about 900 kHz and the range is limited to about 1 µs. The use of angle modulation keeps the measurement relatively
	LRL/LRM calibration capability		The LRL calibration technique uses the characteristic impedance of a length of transmission line as the calibration standard. A full LRL calibration consists merely of two transmission line measurements, a high reflection measurement, and an isolation measurement. The LRM calibration technique is a variation of the LRL technique that utilizes a precision termination rather that a second length of transmission line. A third optional standard, either Line or Match may be measured in order to extend the frequency range of the calibration. This extended calibration is achieved by mathematically concatenating either two LRL, two LRM, or one LRL and one LRM calibration(s). Using these techniques, full 12-term error correction can be performed on the MS462XX VNA.
	Dispersion cor	mpensation	Selectable as Coaxial (non-dispersive), Waveguide, or Microstrip (dispersive)
	Reference pla	ne	Selectable as Middle of line 1 or Ends of line 1
	Corrected imp		Determined by Calibration Standards
	AutoCal®		The Scorpion™ family incorporates internal control of the 3658X-series AutoCal modules.
	FlexibleCal™		Optimize throughput by performing only the sweeps required to characterize multi-port devices. Also enables convenient switching between 2, 3 and 4 port calibration without recalibration.
Hard copy	Printer		Scorpion™ supports the HP 2225C InkJet, HP QuietJet, HP DeskJet, HP LaserJet II, III, IV, & V Series, and Epson compatible printers with parallel (Centronics) interfaces. They are also compatible with the ANRITSU "VNA Capture" program (outputs bitmap file over GPIB) and provide bitmap output over front panel to disk.
Ϊ	GPIB plotters		Scorpion™ supports the HP Models 7440A, 7470A, and 7475A and Tektronix Model HC100 plotters.
	Internal memory		Ten front panel states (setup/calibration) can be stored and recalled from nonvolatile memory locations. The current front panel setup is automatically stored in nonvolatile memory at instrument powerdown. When power is applied, the instrument returns to its last front-panel setup. The system will be able to exchange two stored calibrations in <0.5 s.
_	Internal nonvolatile memory		Used to store and recall measurement and calibration data and front panel setups. All files are MS-DOS compatible.
Storage	Internal floppy disk drive		A 3.5 inch diskette drive with 1.44 Mb formatted capacity is used to load measurement programs and to store and recall measurement and calibration data and front panel setups.
0,	Measurement data		102,8 kb per 1601 point S-parameter data file
	Calibration data		187.3 kb per 1601 point S-parameter data file (12-term cal plus setup)
	Trace memory file		12.8 kb per 1601 point channel
-	GPIB interfaces		2 ports
GPIB	System GPIB (IEEE-488.2)		Connects to an external controller for use in remote programming of the network analyzer. Address can be set from the front panel and can range from 1 to 30.
Ö	Dedicated GPIB		Connects to external peripherals for network analyzer controlled operations (e.g., GPIB plotters, frequency counters, frequency synthesizers, and power meters).
			Continued on next page

Continued on next page

<u>a</u>	Power requirements	85-240V, 48-63 Hz, 540 VA maximum
General	Dimensions	222H x 425W x 450D mm (8.75 x 16.75 x 17.75 in)
Ö	Weight	< 23kg. (52 lb.)
ental	Storage temperature range	-40°C to +75°C.
Environmenta	Operating temperature range	0°C to +50°C (specifications apply at 23°C ±3 °C).
Ë	Relative humidity	5% to 95% at +40°C.
		EMC Directive - 89/336/EEC
	Meets the emmissions and immunity requirements of	EN50081-1:1992
		CISPR-11:1990/EN55011:1991 Group 1 Class A
		EMC Directive - 89/336/EEC per EN61326
EMC		EMMISSIONS Standard EN55011:1991 IEC 61000-3-2 IEC 61000-3-3
Ш		IMMUNITY Standard IEC 1000-4-2:1995/prEN50082-1:1995 - 4kV CD, 8kV AD IEC 1000-4-3:1995/ENV50140:1994 - 3V/m IEC 1000-4-4:1995/prEN50082-1:1995 -500V SL; 1000V PL IEC 1000-4-5:1995/prEN50082-1:1995 - 2kV L-E, 1kV L-L IEC 1000-4-6:1995/ENV50141:1994 IEC 1000-4-8:1995/prEN50082-1:1995 IEC 1000-4-11:1995/prEN50082-1:1995
	Safety	Meets safety requirements of Low Voltage/Safety Standard 72/23/EEC - EN61010-1:1993

Ordering information
Please specify model/order number, name, and quantity when ordering.

Model/Order No.	Name
	Main frame
MS4622A	10MHz – 3GHz transmission/reflection
MS4622B	10MHz – 3GHz active reversing
MS4622D	10MHz – 3GHz Balanced / Differential 4-Port
MS4623A	10MHz – 6GHz transmission/reflection
MS4623B	10MHz – 6GHz active reversing
MS4623D	10MHz – 6GHz Balanced / Differential 4-Port
MS4624A	10MHz – 9GHz transmission/reflection
MS4624B	10MHz – 9GHz active reversing
MS4624D	10MHz – 9GHz Balanced / Differential 4-Port
	Options
Option 1	Rack mount kit with slides
Option 2	Time domain
Option 3A	Adds to MS4622B a 2nd internal source (3 GHz source)
	+ 3rd port
Option 3B	Adds to MS4623B a 2nd internal source (6 GHz source) + 3rd port
Option 3E	Adds to MS4624B a 2nd internal source
	(9 GHz source) + 3rd port
Option 4*1	Noise figure 50 MHz to 3 GHz (only for B models)
Option 4B ^{*1}	Noise figure 50 MHz to 6 GHz (only for B models)
Option 4F*1	Noise figure 50 MHz to 3 GHz (only for D models)
Option 4G ^{≈1}	Noise figure 50 MHz to 6 GHz (only for D models)
Option 5	Frequency translation group delay
Option 6*2	3rd test port (B models; for use with external synthesizer)
Option 7	T/R step attenuator (only for A models, standard on B)
Option 8	Harmonic measurement
Option 11 ⁸³	Test Port connector
Option 13	Intermodulation distortion
	AutoCal®
36581NNF/2	AutoCal [®] , Type N, 10 MHz to 9 GHz
36581KKF/2	AutoCal [®] , Type K, 10 MHz to 9 GHz
36584KF	AutoCal [®] , 4-Port Type K, 10 MHz to 9 GHz
36584NF	AutoCal [®] , 4-Port Type N, 10 MHz to 9 GHz

Model/Order No.	Name
NC346A NC346B	Noise sources 5 dB ENR noise source (3.5 mm) 15 dB ENR noise source (3.5 mm)
3750R 3750R/1 3750R/3 3751R 3751R/2	Calibration kits SMA/3.5 mm RF Cal Kit ≤9 GHz Adds a set of five Phase Equal Insertables (PEIs) Adds additional 3.5 mm (female) and 3.5 mm (male) terminations required for four port calibrations. GPC-7 RF Cal Kit ≤9 GHz Adds a third GPC-7 termination required for three port
3751R/2 3751R/3 3753R 3753R/1 3753R/3 3753-75R 3753-75R/3	Adds a third GPC=7 termination required for three port calibrations. Adds two additional GPC-7 terminations required for four port calibrations. 50 Ω , Type N, RF Cal Kit \leq 9 GHz Adds a set of five Phase Equal Insertables (PEIs) Adds additional N (female) and N (male) terminations required for four port calibrations. 75 Ω , Type N, RF Cal Kit \leq 9 GHz Adds additional N (75 Ω female) and N (75 Ω male) terminations required for four port calibrations.
3663R 3666R 3667R	Verification kits Type N verification kit SMA/3.5 mm verification kit GPC-7 verification kit
15LL50-0.3A 15LL50-0.6A 15LLF50-0.3A 15LLF50-0.6A 15NN50-0.3B 15NN50-0.6B 15NNF50-0.6B	Accessories 3.5 mm Male-Male Cable, 30 cm 3.5 mm Male-Male Cable, 60 cm 3.5 mm Male-Female Cable, 30 cm 3.5 mm Male-Female Cable, 60 cm Type N Male-Male Cable, 30 cm Type N Male-Male Cable, 30 cm Type N Male-Female Cable, 60 cm Type N Male-Female Cable, 60 cm

- *1: Does not include noise source.
 *2: Port 3 is a receiving port only, unless using an external synthesizer.
 *3: Standard connector is N-female, no cost option for 3.5 mm (male),
 3.5 mm (female), N-male, or GPC-7.